Calculation Meeting
 $$
\begin{gathered} \text { Yearl } \\ +-x \div \end{gathered}
$$

 Yearl

 Yearl
 How do we solve problems?

Addition

Multiplication

- add
- more
- plus
- make
- sum
- total
- altogether

Subtraction

- subtract
- minus
- leave
- less
- take away
- difference between
- lots of
- times
- multiply
- groups of
- product
- multiplied by
- multiple of
- repeated addition
- array

Division

- divide
- divided by
- divided into
- share
- share equally
- equal groups of

Year I maths curriculum

The national curriculum is broken down into the following areas of maths:

- Number and place value
- Addition and subtraction
- Multiplication and division
- Fractions
- Measurement
- Shape
- Position and direction

The road to problem solving
Each year we want to build on the children's ability to solve mathematical problems and reason mathematically. In order to do this, these 4 areas are hugely important.

Number sense

Place value

Methods
Understanding

Place Value
Understanding that each number represents an amount. Especially important when using double and triple digit numbers.

- Understanding how many ones, tens or hundreds are in a number.
- Good place value knowledge will allow children to break down equations and problems into manageable chunks.
- Important skill to understand column method

Barriers to learning What might be getting in the way?

- Understanding what a number is representing
- Counting on/back from a given number
- Knowing I more and I less
- Knowing IO more IO less
- Understanding place value - $100 \mathrm{~s}, \mathrm{IO}$ and Is

$$
\begin{gathered}
T 0 \\
43 \\
10 \\
40 \\
4 \times 10 \\
4 \times 1 \\
10+10+10+10
\end{gathered} 1+1+18
$$

Some things to practise

- Counting to and from given numbers
- Simple number facts
- Asking how do you know?
- Subitising - knowing without counting

Concrete, pictorial and abstract

Objects/things to handle
-Cubes
-Pencils
-IOs and Is

A visual representation
-Drawings
-Bar models
-Arrays

Numbers and symbols -Equations
-Operations e.g. + -

Addition

Methods we teach:

- Concretes - Cubes, numicon, bead strings, rekenreks, IOs and Is
- First, then, now
- Number lines
- Drawings
- Lines and dots
- IO frames
- Partitioning - Breaking down
- Counting on

Methods of addition using concrete objects/manipulatives

- Cubes, tens and ones, IO frames, numicon, bead strings, rekenreks, IOs and Is
- All of these give clear visual representations of numbers
I. Make the greater amount (doesn't have to happen)

2. Add on the second amount
3. Count to find the total

First, Then, Now Activity Mat		
First	Then	Now

Methods of addition using pictures and drawings

- Pictures of manipulatives or drawings
- Whole, part, part and bar models show how two amounts can create a total

17	
4	13

$6+4=10$

Addition - Number lines

- Start with the greater number (this doesn't need to happen)
- Work out how many jumps you need to do
- Answer is the number you land on
- Extend to jumps of 10 then I

Addition using place value and lines and dots

- Break the number down into IO s and I_{s} and draw them as lines and dots
- Make the equation easier.
- Common misconception is to count the $1 O s$ as a \mid or vice versa.
$23+12=$

Subtraction

- Much the same as addition but backwards.
- Children are taught that subtraction will decrease the value of our amount.
- We have to start with the greatest number or amount
- Key language -subtract, minus, take away, less than, fewer

Methods of subtraction using concrete objects/manipulatives

- Cubes, tens and ones, 10 frames, numicon, bead strings, rekenreks

1. Make the greater amount
2. Physically take away the other amount

3. Count to find the total

Subtraction with number lines

- Start from greatest number
- Work out how many jumps backwards you will be doing
- Do your jumps
- The answer is the number you land on.

$$
10-6=4
$$

$15-13=2$

Subtraction using drawings and lines and dots

- Draw the total
- Cross out how many are being taken away
- Count what is left $6-2=4$

$$
\begin{aligned}
& 1 \|_{4}^{*} \\
& \vdots: \\
& 28-14=14
\end{aligned}
$$

$$
4-3=1
$$

Subtraction using place value

- Use place value to break down the equation and make it easier.
- Take away ones first then IOs - Or the other way around depending on which they find best.
- Draw IOs and Is and cross them out.

$$
\begin{aligned}
& 26-12= \\
& 26-2=24 \\
& 24-10=14
\end{aligned}
$$

Addition and Subtraction with exchanging/converting

Please note addition and subtraction equations like the following will only be taught when pupils are ready. They are the most challenging equations to solve.

```
16+17= Lines and dots
24+9= Break it down
14-5= Objects/number line/Counting back
Adding/subtracting the 1s first
- Drawings lines and dots and converting a 10 into 10 1s
```

$16+17=33$
$1::+1|::=1| 1 \mid$

We do not teach column method in Year 1 unless the teacher is 100% sure it wont confuse the child.

Multiplication and Division

- Creating equal groups
- Identifying equal and non-equal groups

3×5

Multiplication

- Groups of or lots of the same number using objects or pictures
- Can be represented as an array, repeated addition or by drawing groups using dots and circles

There are 3 equal groups, with 4 in each group.

Repeated addition $4+4+4+4+4+4=24$
You can use an array to multiply.
To find 6×4, make an array of 6 rows of 4 .

$3 \times 5=$

Division

- Breaking an amount into equal groups
- Sharing objects
- Circles and dots
- We share the greater amount between the smaller

Circles and dots
$8 \div 2=$

Home Learning

- KIRF home learning
- Mathletics
- Purple Mash
- Maths challenges - On the website
https://toytheater.com/category/teacher-tools/virtual-manipulatives/
https://www.didax.com/math/virtual-manipulatives.html

